Skip to product information
1 of 1

The Mössbauer Effect

Regular price £25.95
Sale price £25.95 Regular price £25.95
Sale Sold out
The Mössbauer effect was discovered by, and named after, Rudolf Mössbauer at the Technical University of Munich in 1958. It soon became apparent that Mössbauer spectroscopy had applications in a va...
Read More
  • Format:
  • 17 April 2019
View Product Details

The Mössbauer effect was discovered by, and named after, Rudolf Mössbauer at the Technical University of Munich in 1958. At first, this appeared to be a phenomenon related to nuclear energy levels that provided some information about excited state lifetimes and quantum properties. However, it soon became apparent that Mössbauer spectroscopy had applications in a variety of fields, such as general relativity, solid state physics, chemistry, materials science, biology, medical physics, archaeology and art. It is the extreme sensitivity of the effect to the atomic environment around the probe atom, as well as the ability to apply the technique to some interesting and important elements, most notably iron, that is responsible for the Mössbauer effect's extensive use. This text reviews the historical development of the Mössbauer effect, the experimental details, the basic physics of hyperfine interactions and some of the numerous applications of Mössbauer effect spectroscopy.

files/i.png Icon
Price: £25.95
Publisher: Morgan & Claypool Publishers
Imprint: Morgan & Claypool Publishers
Publication Date: 17 April 2019
ISBN: 9781643274812
Format: eBook
BISACs:

SCIENCE / Physics / Atomic & Molecular, SCIENCE / Physics / Nuclear, SCIENCE / Physics / Quantum Theory

REVIEWS Icon

Preface

Acknowledgements

Author Biography

Chapter 1 The history of resonance fluorescence

1.1 Introduction

1.2 Atomic resonance fluorescence

1.3 The Heisenberg linewidth and recoil energy

1.4 The early history of nuclear resonance fluorescence

Problems

References and suggestions for further reading

Chapter 2 The Mössbauer effect

2.1 Introduction

2.2 Discovery of the Mössbauer effect

2.3 More about the Mössbauer effect

2.4 Choice of a Mössbauer transition

2.5 Experimental considerations

Problems

References and suggestions for further reading

Chapter 3 Properties of the nucleus

3.1 Introduction

3.2 Nuclear quantum numbers

3.3 Electromagnetic multipole moments of the nucleus

References and suggestions for further reading

Chapter 4 Hyperfine Interactions - Part I: The electric monopole interaction and the chemical isomer shift

4.1 Introduction

4.2 The electric monopole interaction

4.3 The chemical isomer shift

References and suggestions for further reading

Chapter 5 Hyperfine interactions- Part II: The electric quadrupole interaction

5.1 Introduction

5.2 The electric quadrupole interaction

5.3 Quadrupole splitting of Mössbauer spectra

References and suggestions for further reading

Chapter 6 Magnetic properties of materials

6.1 Paramagnetic materials

6.2 Ferromagnetic materials and mean field theory

6.3 Antiferromagnetic materials

6.4 Ferrimagnetic materials

References and suggestions for further reading

Chapter 7 Hyperfine interactions - Part III: The magnetic dipole interaction and the nuclear Zeeman effect

7.1 Introduction

7.2 The magnetic dipole interaction

7.3 Zeeman splitting of Mössbauer spectra

Problems

References and suggestions for further reading

Chapter 8 Applications of Mössbauer effect spectroscopy

8.1 Introduction

8.2 General relativity

8.3 Magnetic ordering studies

8.4 Crystallographic structure studies

8.5 Mineralogical studies

8.6 Investigations of extraterrestrial materials

8.7 Counterfeit currency detection

References and suggestions for further reading