We're sorry. An error has occurred
Please cancel or retry.
A First Course in Functional Analysis
Some error occured while loading the Quick View. Please close the Quick View and try reloading the page.
Couldn't load pickup availability
- Format:
-
01 February 2013

This book provides the reader with a comprehensive introduction to functional analysis. Topics include normed linear and Hilbert spaces, the Hahn-Banach theorem, the closed graph theorem, the open mapping theorem, linear operator theory, the spectral theory, and a brief introduction to the Lebesgue measure. The book explains the motivation for the development of these theories, and applications that illustrate the theories in action. Applications in optimal control theory, variational problems, wavelet analysis and dynamical systems are also highlighted. ‘A First Course in Functional Analysis’ will serve as a ready reference to students not only of mathematics, but also of allied subjects in applied mathematics, physics, statistics and engineering.
MATHEMATICS / Functional Analysis, Functional analysis and transforms
Introduction; I. Preliminaries; II. Normed Linear Spaces; III. Hilbert Space; IV. Linear Operators; V. Linear Functionals; VI. Space of Bounded Linear Functionals; VII. Closed Graph Theorem and Its Consequences; VIII. Compact Operators on Normed Linear Spaces; IX. Elements of Spectral Theory of Self-Adjoint Operators in Hilbert Spaces; X. Measure and Integration Lp Spaces; XI. Unbounded Linear Operators; XII. The Hahn-Banach Theorem and Optimization Problems; XIII. Variational Problems; XIV. The Wavelet Analysis; XV. Dynamical Systems; List of Symbols; Bibliography; Index