We're sorry. An error has occurred
Please cancel or retry.
An Introduction to the Gas Phase

Some error occured while loading the Quick View. Please close the Quick View and try reloading the page.
Couldn't load pickup availability
- Format:
-
23 November 2017

An Introduction to the Gas Phase is adapted from a set of lecture notes for a core first-year lecture course in physical chemistry taught at the University of Oxford. The book is intended to give a relatively concise introduction to the gas phase at a level suitable for any undergraduate scientist. After defining the gas phase, properties of gases such as temperature, pressure, and volume are discussed. The relationships between these properties are explained at a molecular level, and simple models are introduced that allow the various gas laws to be derived from first principles. Finally, the collisional behaviour of gases is used to explain a number of gas-phase phenomena, such as effusion, diffusion, and thermal conductivity.

SCIENCE / Chemistry / Physical & Theoretical, Chemical physics, SCIENCE / Mechanics / Dynamics, SCIENCE / Physics / Atomic & Molecular, Dynamics and statics, Atomic and molecular physics

1 Introduction 1
1.1 States of matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Characteristics of the gas phase . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Gases and vapours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Phase diagrams and phase transitions: under what conditions is a substance
a gas? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4.1 Constructing a phase diagram: the Clapeyron and Clausius-Clapeyron
equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Pressure and Temperature 7
2.1 Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Measurement of pressure . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Thermal equilibrium and measurement of temperature . . . . . . . 12
3 Relationships between gas properties: the gas laws 14
3.1 The relationship between pressure and volume . . . . . . . . . . . . . . . . 14
3.2 The effect of temperature on pressure and volume . . . . . . . . . . . . . . 14
3.3 The effect of the amount of gas, n . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Equation of state for an ideal gas . . . . . . . . . . . . . . . . . . . . . . . 16
4 Ideal gases and real gases 17
4.1 The ideal gas model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 The compression factor, Z . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Equations of state for real (non-ideal) gases . . . . . . . . . . . . . . . . . 19
5 A molecular perspective: the kinetic theory of gases and the molecular speed
distribution 22
5.1 Collisions with the container walls - determining pressure from molecular
speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 The Maxwell Boltzmann distribution revisited . . . . . . . . . . . . . . . . 25
5.3 Mean speed, most probable speed and root-mean-square speed of the particles
in a gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
ii
CONTENTS iii
6 Collision rates in gases 29
6.1 Collisions with the container walls . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Collisions with other molecules . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3 Mean free path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.4 Effusion and gas leaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.5 Molecular beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.5.1 Effusive sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.5.2 Supersonic sources . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7 Transport properties of gases 36
7.1 Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.3 Thermal conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.5 A simple derivation of the equipartition result for translational motion . . . 41
7.6 A more general derivation of the equipartition theorem . . . . . . . . . . . 42
Appendix: The Equipartition theorem